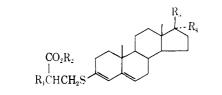
hexanenitrile⁴ with Adam's catalyst in the presence of acetic anhydride gave the desired compound in $58_{16}^{\prime\prime}$ yield as a red, viscons liquid, bp $173^{\circ}(0.5 \text{ mm})$, $n^{24}\text{p}$ 1.4679. Anal. (C₈II₁₆N₂O₃) C₁ II, N. Nef hydrolysis of this 4-nitro compound gave the previously intreported 4-ketohexanenitrile, bp $75-80^{\circ}(0.5 \text{ mm})$, $n^{26}\text{p}$ 1.4338. Anal. (C₆H₂NO) C, H, N.

(4) G. D. Buckley, Y. J. Elliott, F. G. Hunt, and A. Lowe, J. Org. Chem., 8, 10 (1943).


Cysteine Derivatives of Keto Steroids

ROBERT T. BLICKENSTAFF

Medical Research Laboratory, Division of Medicine, Veterans Administration Hospital, and Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202

Received March 25, 1968

The condensation of 1-cysteine derivatives with Δ^{4-3} -kero steroids in the presence of pyridininm chloride¹ has been found to give the corresponding diene thioethers.² When compared with testosterone in mice, **3** was devoid of androgenic, myotropic, and antiestrogenic activity.³

 $\begin{array}{l} 1, \ R_1 \ = \ C_6 H_5 CH_2 CONH; \ R_2 \ = \ CH_3; \ R_3 \ = \ C_8 H_{17}; \ R_4 \ = \ H \\ \textbf{2}, \ R_1 \ = \ Cl^- H_3 N^+; \ R_2 \ = \ C_2 H_3; \ R_3 \ = \ OH; \ R_4 \ = \ H \\ \textbf{3}, \ R_4 \ = \ Cl^- H_3 N^+; \ R_2 \ = \ C_2 H_3; \ R_3 \ = \ O11; \ R_4 \ = \ CH_3 \end{array}$

Experimental Section⁴

Methyl S-(3,5-Cholestadien-3-yl)-N-phenylacetyl-u-cysteinate (1).--A solution of 500 mg (1.3 numoles) of cholestenone in 25 ml of C_6H_6 was distilled until 5 ml had collected. A solution composed of 880 mg (5.2 numoles) of nucthyl N-phenylacetyl-u-cysteinate,⁵ 48 mg of pyridinium chloride, 6 ml of EtOH, and 4 ml of C_6H_6 was added. The solution was refluxed 3 hr, cooled, diluted with 30 ml of ether, and washed with two 25-ml portions of 1 N NaOH. After one H₂O wash the ethereal solution was dried (Na₂SO₄) and evaporated leaving 740 mg of semisolid. Precipitation from acetone-petroleum ether (bp 30-60°) gave 264 mg of 1. mp 119-125°. Further work-up of the mother liquor gave another 100 mg of 1. mp 100-119°, and 167 mg of recovered cholestenone. The analytical sample (*i*-Pr₂O) had mp 158-159°. Anal. (C₃₉H₅₇NO₃S) H, N, S.

Ethyl S-(17 β -Hydroxy-3,5-androstadien-3-yl)-L-cysteinate Hydrochloride (2).--A similar condensation between testosterone and ethyl L-cysteinate hydrochloride gave 2 as an amorphous solid (acetone), mp 176-179°. Anul. (C₂₁H₂₅ClNO₃S) C. H. Cl, N, S.

Ethyl S- $(17\beta$ -Hydroxy- 17α -methyl-3,5-androstadien-3-yl)-Lcysteinate Hydrochloride (3).—Similarly, 17α -methyltestosterone and ethyl L-cysteinate hydrochloride gave 3, needles (Me₂CO-C₆H₆), mp 171–172°. Anal. (C_{2b}H₄₀ClN()₃S) C, H, Cl, N, S.

Acknowledgment.—This work was supported in part by U. S. Public Health Service Research Grant AM-04531.

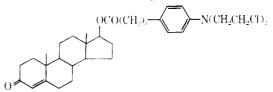
(1) J. Romo, M. Romero, C. Djerassi, and G. Rosenkranz, J. Am. Chem. Soc., 73, 1528 (1951).

(2) Δ^{4} -3-Keto steroids are reported not to react with cysteine or edge cysteinate: S. Lieberman, Experientia, 2, 411 (1945).

(3) We are indebted to Dr. R. Kraay, Eli Lilly and Co., for these assays.
(4) It spectra were obtained on an Infracord, dv spectra on a Beckman

DU. Microanalyses are by Galbraith Laboratories, Knoxville, Tenn.
(5) Z. Foldi, Acta Chim. Acod. Sci. Hung., 5, 187 (1954); Chem. Abste.,

(5) Z. FOIR, Acta Conm. Acta, Sci. Hung., 5, 18 (1954); Chept. Abst., 50, 9815 (1956).


17β-(4'-{p-[Bis(β-chloroethyl)amino]phenyl}butanoyloxy)-4-androsten-3-one

E. L. FOSTER AND R. T. BLICKENSTOFF

Medical Research Laboratory, Division of Medicine, Veterans Administration Hospital, and Department of Biochemistry, Dudiana University Schoot of Medicine, Indianapolis, Indiana 46202

Received March 25, 1968

The synthesis and antirumor evaluation of steroidal mirrogen nustards¹ prompted as to synthesize the chlorambucil ester of testosterone by treating chlorambucil chloride with the potassium salt of testosterone in refluxing benzene.

Experimental Section²

 $17\beta - (4' - \{p - [Bis(\beta - chloroethyl)amino]phenyl \} butanoyloxy) - 4$ androsten-3-one.3--Testosterone, 0.34 g (1.1 mmoles), was dissolved in dry C₆H₆, excess K was added, and the mixture was then refluxed overnight. After filtration of the unreacted K, the C_6H_6 solution of the potassium salt was added to residual chlorambneil chloride, which was prepared from 0.35 g (1.1 mmoles) of chlorambueil and 2 ml of $POCl_3$ in refluxing C_6l1_6 with subsequent solvent removal. The esterification reaction mixture was reflaxed 5 hr, then left at room temperature overhight. The solvert was evaporated to give 512 mg of crade product, which was chromatographed on 10 g of Al_2O_8 . C_6H_6 olnted 60 mg of acid chloride, 43 mg of the ester (analytical sample), and 34 mg of impure ester, while C_6II_6 -Et₂O (4:1) eluted 154 mg of additional ester. Rechromatography of the last two fractions (188 mg) plos 82 mg of similar product from another preparation on 8 g of Al_2O_3 gave 211 mg of ester elined by C_8H_6 - $E_{12}O(4;1)$, Anal. ($C_{33}H_{45}Cl_2NO_3$) C, H, N.

(1) (a) G. V. Rao and C. C. Price, J. Org. Chem., 27, 205 (1962); (b) S. II.
Barstein and H. J. Ringold, *itaia.*, 26, 3084 (1961); (c) W. J. Geoster and
G. M. Sterman, *ibid.*, 23, 1227 (1958); (d) A. M. Khaletskii, M. V. Vasil'eva,
and E. M. Batanova, Schettich, Produktų iz Kooifali i Skipidare, Abad. Nock
Belorassk, SSR, Tseutr. Nourbu.-Issled, i Proekto, Inst. Lesokhim, Prom., Tr.
Tses, Nuacha.-Tekka, Saetsheh, Gocki, 1003, 227 (1964); Chem. Abstr., 62,
9194 (1965); (e) G. R. Vavisoori II. I. Bolker, and A. F. McKay, Cum. J.
Chem., 30, 933 (1952); (f) R. E. Havranck and N. J. Doorenbos, J. Anc.
Chem., Assoc., Sci. Ed., 49, 328 (1960); (a) T. Nogrady, K. M. Vagi, and
Y. W. Adamkiewicz, Can. J. Chem., 40, 2126 (1962); (b) L. N. Voloveliskii
and A. B. Simkima, Zh. Obshek, Khim, 37, 1574 (1967); (j) Nietdesen-Dovaz,
A. Combanis, and E. Tucanceano, J. Med. Chem., 10, 172 (1967); (j) C. R.
Watk, T. C. Choa, and H. H. Liu, *ibid.*, 10, 255 (1967).

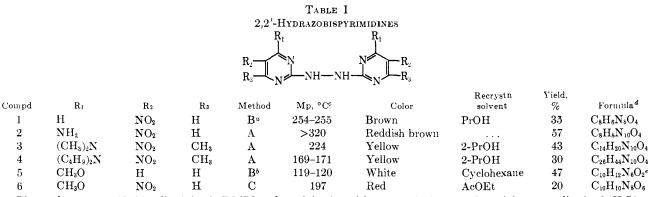
(2) Ir spectra were obtained on an Infracord, uv spectra on a Becktono DU. Microanalyses are by Galbraith Laboratories, Knoxville, Tenn.

(3) This compound was sobunited to the Cancer Chemotherapy National Service Center, Public Heat(b Service, for an evaluation of its antitomor activity against acote hymphocytic lenkemia.

2,2'-Hydrazobis(5-nitropyrimidines)

Mosbe Avramoff

Department of Chemistry, The Weizmann Inslitude of Science, Rehorot, Israel


Received June 5, 1968

2-Amino-5-nitropyrimidine and its derivatives possess prononneed trichomonacidal activity.⁶ We have shown that symmetrical 2,2'-hydrazobis(5-nitrothiazoles) also show a very strong antiprotozoal activity.² The combination of these two features

(1) R. M. Michaels and R. E. Strube, J. Pharm. Pharmacol., **13**, 601 (1961); R. M. Michaels, J. Protomol., **9**, 478 (1962).

(2) M. Avramoff, S. Adler, and A. Fonner, J. Med. Cheno, 10, 1138 (1967).

⁻⁻⁻⁻⁻

^a The product was purified by dissolving in DMSO and precipitating with water. ^b The filtered precipitate was dissolved (H₂O) and the free base was precipitated with NH₄OH. ^c All the nitro compounds melted with decomposition. ^d All compounds were analyzed for N. ^e Analyzed for C, H, N.

has led us to prepare a series of 2,2'-hydrazobis(5-nitropyrimidines) as potential antiprotozoal agents. Most of the compounds were obtained by the condensation of the corresponding 2-chloropyrimidines with hydrazine in alcoholic solution (Table I).

Experimental Section³

2-Chloro-5-uitropyrimidine,⁴ 4-amino-2-chloro-5-uitropyrimidine,⁶ 2-chloro-4-dimethylamino-6-methyl-5-nitropyrimidine,⁶ and 2-chloro-4-methoxypyrimidine⁷ were prepared by procedures described in the literature.

2-Chloro-4-dibutylamino-6-methyl-5-nitropyrimidine.—A solution of 9.7 g (75 mmoles) of dibutylamine and 4.3 ml (75 mmoles) of AcOH in 20 ml of H₂O was added to a solution of 5.2 g (25 mmoles) of 2,4-dichloro-6-methyl-5-nitropyrimidine⁸ in 20 ml of dioxane. The mixture was stirred for 2 days and then extracted several times (C₈H₆). The residue, obtained after evaporation of the organic solvent was chromatographed on acid-washed alumina. The fraction eluted with petroleum ether (bp 40–60°) yielded 5.1 g (68%), bp 158° (0.8 mm). Anal. (C₁₃H₂₁ClN₄O₂) C, H, Cl, N.

2,2'-Hydrazobispyrimidines (Table I). Method A.—A mixture of the corresponding 2-chloropyrimidine (9 mmoles), hydrazine hydrate (4.5 mmoles), and Et_3N (10 mmoles) in t-BuOH (35 ml) was refluxed with stirring for 10 hr. The precipitate was filtered, washed (MeOH), dissolved in concentrated HCl, and precipitated with H₂O.

Method B.—One mole of the corresponding 2-chloropyrimidine and 0.5 mole of hydrazine hydrate in absolute EtOH were refluxed with stirring for 10 hr.

Method C.—To a solution of 25 mg of 5 in 2 ml of concentrated H_2SO_4 was added at 0° a solution of 0.12 ml of fuming HNO_3 in 0.6 ml of concentrated H_2SO_4 . The mixture was stirred at 0° for 1 hr and poured into ice.

(3) Melting points were taken in capillary tubes and are uncorrected. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values. All the hydrazopyrimidines were also identified by their molecular weights, determined by mass spectroscopy.

(4) A. Signor, E. Scoffone, L. Biondi, and S. Bezzi, Gazz. Chim. Ital., 93, 65 (1963).

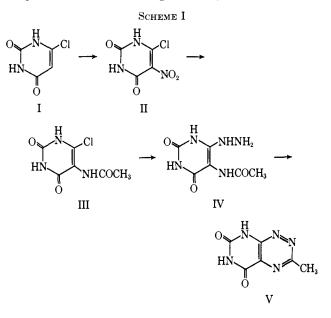
(5) D. J. Brown, J. Appl. Chem. (London), 2, 239 (1952).

(6) F. L. Rose, J. Chem. Soc., 4116 (1954).

(7) H. Yamanaka, Chem. Pharm. Bull. (Tokyo), 7, 297 (1959); Chem. Abstr., 54, 24782 (1960).

(8) A. Albert, D. J. Brown, and H. C. S. Wood, J. Chem. Soc., 3832 (1954).

Synthesis of 5,7-Dioxo-3-methyl-5,6,7,8-tetrahydropyrimido[5,4-e]-as-triazine¹


KWANG-YUEN ZEE-CHENG AND C. C. CHENG

Midwest Research Institute, Kansas City, Missouri 64110

Received April 22, 1968

In connection with our investigation of compounds related to a series of pyrimido[5,4-e]-as-triazine antibiotics [toxoflavin (xanthothricin), fervenulin (planomycin)^{2- δ}], one of the parent

N-unsubstituted derivatives, 5,7-dioxo-3-methyl-5,6,7,8-tetrahydropyrimido[5,4-e]-as-triazine (V), was synthesized (Scheme I). Compound V is the 7-aza analog of 6-methyllumazine.⁶⁻⁹

As expected, the uv absorption spectra (pH 1 and 11) of V resembled more closely those of 1-demethyltoxoflavin⁵ rather than those of toxoflavin^{2,4} or fervenulin.³

Experimental Section

4-Chloro-5-nitrouracil (II).—The reported procedure gave low yields.¹⁰ The following is a modified procedure. 4-Chlorouracil¹⁰ (11.5 g, 0.08 mole) was added in small portions to 36 ml of concentrated H₂SO₄ at 15° with stirring. To the solution at $0-5^{\circ}$ was added, dropwise, 12 ml of fuming HNO₃ (90%). After addition, the mixture was stirred for 30 min at 10°. The resulting yellow solution was poured, with vigorous stirring, into 60 g of

(1) This investigation was supported by the Cancer Chemotherapy National Service Center, National Cancer Institute, of the National Institutes of Health, U. S. Public Health Service, Contract No. PH-43-65-94.

- (2) G. D. Daves, Jr., R. K. Robins, and C. C. Cheng, J. Am. Chem. Soc., 83, 3904 (1961).
- (3) G. D. Daves, Jr., R. K. Robins, and C. C. Cheng, J. Org. Chem., 26, 5256 (1961).
- (4) G. D. Daves, Jr., R. K. Robins, and C. C. Cheng, J. Am. Chem. Soc., 84, 1724 (1962).
- (5) T. K. Liao, F. Baiocchi, and C. C. Cheng, J. Org. Chem., **31**, 900 (1966).
- (6) R. B. Angier, J. H. Boothe, J. H. Mowat, C. W. Waller, and J. Semb, J. Am. Chem. Soc., 74, 408 (1952).
 - (7) T. Neilson and H. C. S. Wood, J. Chem. Soc., 44 (1962).
- (8) W. V. Curran and R. B. Angier, J. Org. Chem., 27, 1366 (1962).
 (9) T. Urushibara, H. Sato, and M. Goto, Nippon Kagaku Zasshi, 87, 972 (1966).
- (10) R. M. Cresswell and H. C. S. Wood, J. Chem. Soc., 4768 (1960).